On graphs all of whose {C3, T3}-free arc colorations are kernel-perfect
نویسندگان
چکیده
A digraph D is called a kernel-perfect digraph or KP -digraph when every induced subdigraph of D has a kernel. We call the digraph D an m-coloured digraph if the arcs of D are coloured with m distinct colours. A path P is monochromatic in D if all of its arcs are coloured alike in D. The closure of D, denoted by ζ(D), is the m-coloured digraph defined as follows: V (ζ(D)) = V (D), and A (ζ(D)) = ∪ i {(u, v) with colour i: there exists a monochromatic path of colour i from the vertex u to the vertex v contained in D}. We will denoted by T3 and C3, the transitive tournament of order 3 and the 3-directed-cycle respectively; both of whose arcs are coloured with three different colours. Let G be a simple graph. By an m-orientation-coloration of G we mean an m-coloured digraph which is an asymmetric orientation of G. By the class E we mean the set of all the simple graphs G that for any m-orientation-coloration D without C3 or T3, we have that ζ(D) is a KP -digraph. In this paper we prove that if G is a hamiltonian graph of class E, then its complement has at most one nontrivial component, and this component is K3 or a star.
منابع مشابه
Kernels in the closure of coloured digraphs
Let D be a digraph with V (D) and A(D) the sets of vertices and arcs of D, respectively. A kernel of D is a set I ⊂ V (D) such that no arc of D joins two vertices of I and for each x ∈ V (D) \ I there is a vertex y ∈ I such that (x, y) ∈ A(D). A digraph is kernel-perfect if every non-empty induced subdigraph of D has a kernel. If D is edge coloured, we define the closure ξ(D) of D the multidigr...
متن کاملSolving coloring, minimum clique cover and kernel problems on arc intersection graphs of directed paths on a tree
Let T = (V,A) be a directed tree. Given a collection P of dipaths on T , we can look at the arc-intersection graph I(P, T ) whose vertex set is P and where two vertices are connected by an edge if the corresponding dipaths share a common arc. Monma and Wei, who started their study in a seminal paper on intersection graphs of paths on a tree, called them DE graphs (for directed edge path graphs)...
متن کاملPerfect graphs with polynomially computable kernels
In a directed graph, a kernel is a subset of vertices that is both stable and absorbing. Not all digraphs have a kernel, but a theorem due to Boros and Gurvich guarantees the existence of a kernel in every clique-acyclic orientation of a perfect graph. However, an open question is the complexity status of the computation of a kernel in such a digraph. Our main contribution is to prove new polyn...
متن کاملKernels and perfectness in arc-local tournament digraphs
In this paper we give a characterization of kernel-perfect (and of critical kernel-imperfect) arc-local tournament digraphs. As a consequence, we prove that arc-local tournament digraphs satisfy a strenghtened form of the following interesting conjecture which constitutes a bridge between kernels and perfectness in digraphs, stated by C. Berge and P. Duchet in 1982: a graph G is perfect if and ...
متن کاملParity graphs are kernel-M-solvable
While the famous Berge’s Strong Perfect Graph Conjecture (see [l] for details on perfect graphs) remains a major unsolved problem in Graph Theory, an alternative characterization of Perfect Graphs was conjectured in 1982 by Berge and the author [3]. This second conjecture asserts the existence of kernels for a certain type of orientations of perfect graphs. Here we prove a weaker form of the co...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Discussiones Mathematicae Graph Theory
دوره 21 شماره
صفحات -
تاریخ انتشار 2001